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Organic semiconductors have attained much attention because

of the recent progress of organic light-emitting diodes (OLEDS)
and field-effect transistors (FETS). It was impressive that FETs
based on organic single crystals exhibited superconductivity,
lasing? and quantum Hall effectin the last paper, we reported
that perfluorinated oligg-phenylene)s, such as perflugpe-
sexiphenyl (GsF26), were efficient n-type semiconductors for the
electron-transport layer of OLED3Molecular design of organic
semiconductors for FETs should be different from that for OLEDSs.
A FET requires planar and crystalline materials for high carrier
mobility. On the other hand, an OLED prefers nonplanar and

amorphous materials. We designed tetradecafluorosexithiophene ———

(perfluoroe-sexithiophenePF-6T) as a potential n-type semi-
conductor for FETSs for the following reasons: (1) The dihedral
angles of perfluorinated oligothiophenes would be much smaller
than those of perfluorinated oligophenylehéshiophene rings
have arall-trans conformatiorf (See Chart 1.) (2x-Sexithiophene
(6T) is an excellent p-type semiconductor with high hole
mobility.” (3) Perfluorination is an effective way to convert a
p-type organic semiconductor to an n-type 6fi€.We report
herein the synthesis and X-ray structureR¥#-6T. Absorption

and emission spectra as well as thermal and electrochemical

properties are also presented in comparison @ith

Although tetrafluorothiophene has been prepared by fluorina-
tion of thiophene over KCaofand subsequent dehydrofluorina-
tion,1% any perfluorinated oligothiopheneBRE-nT: n > 1) have

not yet been reported. To introduce fluorine atoms to a thiophene

ring, the reaction of thienyllithiuni$ with several F reagent®
was examined. We found thatl-fluoro-N-(phenylsulfonyl)-
benzenesulfonamide, (PhQ&NF, gave the most satisfactory
result!® As shown in Scheme 1, lithiation of TMS-protected 3,4-
dibromothiophenel with an equivalent oh-BuLi followed by
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treatment with (PhSELNF provided a mixture ofl and 3,4-
difluoro-2,5-bis(trimethylsilyl)thiophene2j.* Further lithiation
and fluorination were repeated without isolating the mixture to
afford 2 in 73%. Bromination of2 with N-bromosuccinimide
(NBS) vyielded monobromothiopheng in 79%. Tributyltin
derivative4 was obtained in 62% by lithiation &and quenching
with BuzSnCl. Dibromideb, which was prepared by the reaction
of 2 with bromine in 86%, was allowed to react with 2 equiv of
n-BuLi, (PhSQ),NF, and BySnCl to give stannylated trifluoro-
thiophenes in 85%. The Stille coupling a8 and6 in the presence
of PdCL(PPh), afforded bithiophend. This was treated with
NBS without purification to give perfluoro-5-bromobithiophene
(8) in 74%. Similarly, the coupling reaction dfand8 followed

by bromination yielded perfluoro-5-bromoterthiopherd®)(in
50%. The Ullmann coupling of0 in DMF providedPF-6T in
57%.

PF-6T was purified by train sublimatidh and used for
characterization. It is an orange crystalline solid and slightly
soluble in CHC}{ and aromatic solvents such as toluene. lts
structure was determined by EI-MS, elemental analysis, and X-ray
crystallography® PF-6T exhibits bluish-green photoluminescence
in solution and an orange emission in the solid state. Figure 1
shows the absorption and emission spectr®f6T and6T in
CHCl;. The shapes of the spectra are almost identical. The
absorption and emission maxima BF-6T (421 and 471 nm,
respectively) shifted to higher energies relative to thoséTof
(435 and 508 nm, respectively).

(14) A small amount of monofluorinated compound, (TMSBFBr, was
detected by mass spectrometry. The mekallogen exchange between
(TMS),C,SBrLi and (TMS)C,SFBr is faster than the reaction of (TME)-
SBrLi with (PhSQ).NF and givesl and (TMS)C,SFLi.

(15) Wagner, H. J.; Loutfy, R. O.; Hsiao, C.-Kd. Mater. Sci.1982 17,
2781-2791.
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Figure 3. Molecular packing diagram d®F-6T with a view down the
c axis.
Figure 1. Absorption and emission spectraPf-6T and6T in CHCls.

ning calorimetry (DSC). The DSC trace BF-6T exhibited a the same stack (dotted lines). Dipole moments induced by fluorine atoms
sharp melting endotherm at 286 .12 On the second heating, a  are indicated by arrows.

lower melting endothe(m due to a different grystalline phase was 1 70 10 1.73 A 6T: 1.71-1.74 A). Interestingly, the €C and
observed at 258C, which was followed by |mmed|ate°cryi§al- C—S bonds inPF-6T are slightly shorter than the corresponding
lization at 262°C to the high-temperature phase, (= 286°C). bonds in6T. This is probably because the inductive effect of
The electrochemical measurements BR-6T and 6T were fluorine lowers the energy levels afbonding orbitals. Figure 3
performed in 1,2-dichlorobenzene at 5Q.12 The differential shows a crystal packing view &fF-6T along thec axis. PF-6T
pulse voltammogram (DPV) d8T showed a reduction peak at  5qopts ar-stack structure with face-to-face molecutedhis is
_2+'31 V and two oxidation peaks at 0.41 and 0.63 V (vs Fc/ gyite different from the herringbone structure@, ¢ in which

Fc?). As expected, the redox potentialsRff-6T shifted positively 7 7 interactions between neighboring molecules are minimized
relative to6T: Two reduction peaks at1.86 and—2.05V as g reduce the repulsion betweerorbitals. The molecules in the
well as an oxidation peak at 0.95 V were obseri/ethe potential adjacent stack are tilted at an angle of 84Ih Figure 4, the

differences between the first reduction and oxidation peaks are gport G-C (3.53-3.68 A) and S-S contacts (3.65 A) in the same
2.72V for6T and 2.81 V forPF-6T. This result is in agreement  giack are shown. The next molecule slides along the long

with a blue shift in absorption spectra, suggesting that the mgjecular axis by a thiophene unit to cancel dipole moments
HOMO—-LUMO gap of PF-6T is larger than that of6T in induced by fluorine atoms. We speculate that the dipdigole
solu_tlon. interactions between neighboring molecules overcomerthe
Single crystals ofPF-6T were successfully grown by slow  rapyisions and are responsible for thetack structure rather than
sublimation at 270C under a flow of 1 atm of argol¥.An orange the herringbone structure.
plate was used for X-ray crystallograpty® The structure of In conclusion, we have shown the synthetic method to obtain
PF-6T is all-trans and planar as observed f6i (Figure 2):° erfluorinated oligothiophenes. The X-ray structureRH-6T
The dihedral angles between the adjacent thiophene rings are 0-£uggests high electron mobility along the  stacking direction
(Sl_C4_,C5_ C6), 1.5 (S2-C8-C9-C10), and 0.8(S3-C12- (theb axis). Fabrication of n-type FETs with this new material is
C12-C11). The C-C bond distances are 1.33.39 A in the currently underway and will be reported elsewhere.
thiophene rings@T: 1.34-1.42 A) and 1.43-1.44 A between
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